Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Research shows that skills for improving Psychological Well‐Being (PWB) may belearnedthrough PWB interventions; however, the dynamic mechanisms underlying this learning process are not well understood. Using an Ecological Momentary Intervention (EMI) design, we conducted an 8‐week Randomized Controlled Trial (N = 160; aged 18–22 years), implemented in a mobile Health (mHealth) platform to characterize these dynamical mechanisms. College‐attending early adults were randomized to three groups: an active control group (N = 55); an intervention group (N = 51) with positive practices intervention; and a second intervention group (N = 54) with positive practices and meditation intervention. The mHealth implementation allowed us to introduce the interventions in participants' daily lives while also assessing their PWB (in terms of positive emotions and relationship quality) several times a day. We used a Bayesian process model to analyze changes in PWB in terms of the underlying dynamical characteristics of change. Findings suggested that the mobile assessment tool itself may have longitudinally improved college‐attending early adults' PWB, as evidenced by instances of directional changes in dynamic characteristics (increased within‐person mean levels, decreased intra‐individual variability, and increased regulation) of PWB measures. Moderation analysis also revealed that people who were low on negative affect improved the most in terms of their mean levels of positive emotions and relationship quality.more » « lessFree, publicly-accessible full text available May 29, 2026
-
BackgroundWhen unaddressed, contamination in child maltreatment research, in which some proportion of children recruited for a nonmaltreated comparison group are exposed to maltreatment, downwardly biases the significance and magnitude of effect size estimates. This study extends previous contamination research by investigating how a dual‐measurement strategy of detecting and controlling contamination impacts causal effect size estimates of child behavior problems. MethodsThis study included 634 children from the LONGSCAN study with 63 cases of confirmed child maltreatment after age 8 and 571 cases without confirmed child maltreatment. Confirmed child maltreatment and internalizing and externalizing behaviors were recorded every 2 years between ages 4 and 16. Contamination in the nonmaltreated comparison group was identified and controlled by either a prospective self‐report assessment at ages 12, 14, and 16 or by a one‐time retrospective self‐report assessment at age 18. Synthetic control methods were used to establish causal effects and quantify the impact of contamination when it was not controlled, when it was controlled for by prospective self‐reports, and when it was controlled for by retrospective self‐reports. ResultsRates of contamination ranged from 62% to 67%. Without controlling for contamination, causal effect size estimates for internalizing behaviors were not statistically significant. Causal effects only became statistically significant after controlling contamination identified from either prospective or retrospective reports and effect sizes increased by between 17% and 54%. Controlling contamination had a smaller impact on effect size increases for externalizing behaviors but did produce a statistically significant overall effect, relative to the model ignoring contamination, when prospective methods were used. ConclusionsThe presence of contamination in a nonmaltreated comparison group can underestimate the magnitude and statistical significance of causal effect size estimates, especially when investigating internalizing behavior problems. Addressing contamination can facilitate the replication of results across studies.more » « less
-
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.more » « less
An official website of the United States government
